metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hexaaguamagnesium(II) bis[4-(2hydroxybenzylideneamino)benzenesulfonate]

Li-Hua Wang,^a Jie Yin^b and Xi-Shi Tai^c*

^aCollege of Information and Autocontrol Engineering, Weifang University, Weifang 261061, People's Republic of China, ^bDepartment of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China, and ^cDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China

Correspondence e-mail: taixishi@lzu.edu.cn

Received 27 April 2007; accepted 8 May 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.006 Å; R factor = 0.064; wR factor = 0.146; data-to-parameter ratio = 14.8.

In the crystal structure of the title compound, $[Mg(H_2O)_6](C_{13}H_{10}NO_4S)_2$, the packing is stabilized by O_{water} -H···O_{anion} hydrogen bonds. An intramolecular O-H...N bond occurs in the anion. The Mg atom has site symmetry $\overline{1}$.

Related literature

For related literature, see: Tai et al. (2003).

Experimental

Crystal data

[Mg(H₂O)₆](C₁₃H₁₀NO₄S)₂ $M_r = 684.97$ Monoclinic, $P2_1/n$ a = 6.2997 (17) Åb = 35.313(9)Å c = 6.9561 (19) Å $\beta = 90.75 \ (1)^{\circ}$

V = 1547.3 (7) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.26 \text{ mm}^{-1}$ T = 291 (2) K0.30 \times 0.24 \times 0.22 mm

Data collection

```
Bruker SMART APEX CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2000)
  T_{\rm min} = 0.93, \ T_{\rm max} = 0.94
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	205 parameters
$wR(F^2) = 0.146$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
3041 reflections	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

8390 measured reflections

 $R_{\rm int} = 0.044$

3041 independent reflections

2173 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Mg1-O5	2.031 (2)	Mg1-O7	2.071 (2)
Mg1-O6	2.055 (2)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$O1 - H1C \cdot \cdot \cdot N1$	0.85	1.78	2.574 (5)	154
$O5-H5A\cdots O4^{i}$	0.96	2.03	2.732 (3)	129
$O5-H5B\cdots O3$	0.96	1.87	2.768 (3)	154
$O6-H6B\cdots O3^{ii}$	0.96	2.19	2.749 (3)	116
$O6-H6C\cdots O2$	0.97	1.86	2.783 (3)	160
$O7 - H7B \cdot \cdot \cdot O4^{iii}$	0.96	2.25	2.770 (3)	113
$O7 - H7C \cdot \cdot \cdot O2^{iv}$	0.95	1.85	2.760 (3)	159

Symmetry codes: (i) x, y, z - 1; (ii) x + 1, y, z; (iii) -x + 1, -y, -z + 1; (iv) -x + 2, -y, -z + 1.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (20671073), NingXia Natural Gas Transfering Key Laboratory (2004007), the Science and Technology Foundation of Weifang, and Weifang University for research grants.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2398).

References

Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Tai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, 0681-0682.

supplementary materials

Acta Cryst. (2007). E63, m1664 [doi:10.1107/S160053680702274X]

Hexaaquamagnesium(II) bis[4-(2-hydroxybenzylideneamino)benzenesulfonate]

L.-H. Wang, J. Yin and X.-S. Tai

Comment

As part of our ongoing studies of the coordination chemistry of Schiff base ligands (Tai *et al.*, 2003), we now report the synthesis and structure of the title compound, (I), (Fig. 1). Here, however, the ligand is not coordinated to the metal, but instead, a molecular salt arises.

In the crystal of (I), the Mg(II) center (site symmetry $\overline{1}$) is six-coordinate to water molecules. The C7—N1 distance [1.251 (5) Å] in the anion is close to a double-bond value. Otherwise, the geometrical parameters for (I) are normal. The dihedral angle between the two benzene ring is 32.6 (2)°, indicating that the molecule is non-planar, which perhaps correlates with the intramolecular hydrogen bond (Table 1).

Experimental

1 mmol of magnesium perchlorate was added to a solution of salicylaldehyde-4-aminobenzene sulfonic acid (1 mmol) in 10 ml of 95% ethanol. The mixture was stirred for 3 h at refluxing temperature. Evaporating some ethanol, clear blocks of (I) were obtained after two weeks.

Refinement

The O-bound H atoms were located in difference maps and refined as riding in their as-found relative positions with $U_{iso}(H) = 1.2U_{eq}(O)$.

The other H atoms were placed geometrically (C—H = 0.93–0.96 Å, and refined as riding with $U_{iso}(H) = 1.2U_{eq}(carrier)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids (arbitrary spheres for the H atoms). Atoms with the suffix A are generated by the symmetry operator (2 - x, -y, -z).

Hexaaquamagnesium(II) bis[4-(2-hydroxybenzylideneamino)benzenesulfonate]

Crystal data	
$[Mg(H_2O)_6](C_{13}H_{10}NO_4S)_2$	
$M_r = 684.97$	

 $F_{000} = 716$ $D_x = 1.470 \text{ Mg m}^{-3}$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.2997 (17) Åb = 35.313 (9) Åc = 6.9561 (19) Å $\beta = 90.75 (1)^{\circ}$ $V = 1547.3 (7) \text{ Å}^{3}$ Z = 2

Data collection

Bruker SMART APEX CCD diffractometer	3041 independent reflections
Radiation source: sealed tube	2173 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.044$
T = 291(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
phi and ω scans	$\theta_{\min} = 3.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -7 \rightarrow 7$
$T_{\min} = 0.93, \ T_{\max} = 0.94$	$k = -22 \rightarrow 43$
8390 measured reflections	$l = -8 \rightarrow 8$

Mo Kα radiation

Cell parameters from 3237 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.3 - 26.9^{\circ}$

 $\mu = 0.26 \text{ mm}^{-1}$ T = 291 (2) K

Block, brown

 $0.30 \times 0.24 \times 0.22 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.064$	H-atom parameters constrained
$wR(F^2) = 0.146$	$w = 1/[\sigma^2(F_o^2) + (0.0657P)^2 + 0.77P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
3041 reflections	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
205 parameters	$\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.5147 (7)	0.29797 (12)	0.5190 (6)	0.0540 (10)
C2	0.6701 (8)	0.32508 (13)	0.5548 (6)	0.0647 (12)
H2	0.8064	0.3173	0.5893	0.078*
C3	0.6272 (9)	0.36279 (14)	0.5404 (7)	0.0724 (13)
H3	0.7326	0.3806	0.5663	0.087*
C4	0.4255 (9)	0.37428 (13)	0.4871 (7)	0.0712 (14)
H4	0.3957	0.4000	0.4748	0.085*
C5	0.2695 (9)	0.34828 (14)	0.4524 (6)	0.0696 (13)
Н5	0.1344	0.3564	0.4158	0.083*
C6	0.3106 (8)	0.31045 (12)	0.4710 (6)	0.0575 (11)
C7	0.5634 (7)	0.25773 (12)	0.5315 (5)	0.0532 (10)
H7	0.7020	0.2506	0.5614	0.064*
C8	0.4826 (6)	0.19365 (11)	0.5055 (5)	0.0466 (9)
C9	0.3252 (6)	0.16787 (12)	0.5564 (6)	0.0556 (10)
Н9	0.1914	0.1765	0.5901	0.067*
C10	0.3670 (6)	0.13009 (12)	0.5569 (6)	0.0495 (9)
H10	0.2622	0.1130	0.5925	0.059*
C11	0.5665 (5)	0.11689 (10)	0.5043 (4)	0.0349 (7)
C12	0.7255 (6)	0.14225 (11)	0.4507 (5)	0.0455 (9)
H12	0.8588	0.1336	0.4155	0.055*
C13	0.6805 (6)	0.18019 (12)	0.4514 (6)	0.0525 (10)
H13	0.7845	0.1973	0.4148	0.063*
Mg1	1.0000	0.0000	0.0000	0.0385 (4)
N1	0.4280 (5)	0.23230 (10)	0.5038 (5)	0.0536 (8)
01	0.1544 (5)	0.28509 (10)	0.4396 (5)	0.0771 (10)
H1C	0.2119	0.2635	0.4541	0.092*
02	0.8439 (3)	0.06285 (7)	0.4953 (3)	0.0406 (6)
03	0.5166 (4)	0.05345 (7)	0.3242 (3)	0.0465 (6)
O4	0.5167 (4)	0.05225 (7)	0.6716 (3)	0.0452 (6)
05	0.7139 (3)	0.02654 (7)	-0.0016 (3)	0.0421 (6)
H5A	0.7144	0.0460	-0.0981	0.063*
H5B	0.6887	0.0377	0.1221	0.063*
O6	1.1087 (4)	0.03733 (8)	0.2055 (4)	0.0536 (7)
H6B	1.2111	0.0247	0.2852	0.080*
H6C	0.9918	0.0457	0.2832	0.080*
07	0.8927 (4)	-0.03449 (8)	0.2191 (4)	0.0519 (7)
H7B	0.7912	-0.0209	0.2956	0.078*
H7C	1.0104	-0.0419	0.2983	0.078*
S1	0.61427 (12)	0.06773 (2)	0.49840 (11)	0.0325 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.067 (3)	0.050 (2)	0.046 (2)	0.0107 (19)	0.0090 (19)	0.0048 (17)

supplementary materials

C2	0.070 (3)	0.053 (3)	0.071 (3)	0.002 (2)	0.002 (2)	0.005 (2)
C3	0.086 (4)	0.057 (3)	0.075 (3)	-0.008 (3)	0.014 (3)	0.003 (2)
C4	0.107 (4)	0.044 (2)	0.063 (3)	0.018 (3)	0.012 (3)	0.002 (2)
C5	0.098 (4)	0.059 (3)	0.052 (3)	0.028 (3)	-0.008 (2)	0.010 (2)
C6	0.072 (3)	0.052 (2)	0.048 (2)	0.003 (2)	-0.004 (2)	0.0087 (18)
C7	0.057 (3)	0.052 (2)	0.050(2)	0.015 (2)	-0.0015 (18)	0.0063 (18)
C8	0.049 (2)	0.041 (2)	0.049 (2)	0.0062 (17)	-0.0054 (16)	0.0030 (16)
C9	0.036 (2)	0.059 (3)	0.072 (3)	0.0088 (18)	0.0053 (18)	-0.002 (2)
C10	0.0361 (19)	0.053 (2)	0.059 (2)	0.0043 (17)	0.0096 (16)	-0.0018 (18)
C11	0.0269 (16)	0.0469 (19)	0.0309 (15)	-0.0006 (13)	-0.0022 (12)	0.0033 (14)
C12	0.0388 (19)	0.047 (2)	0.051 (2)	0.0036 (16)	0.0147 (16)	0.0013 (16)
C13	0.051 (2)	0.049 (2)	0.058 (2)	-0.0100 (18)	0.0121 (18)	-0.0013 (18)
Mg1	0.0372 (9)	0.0385 (9)	0.0398 (9)	-0.0013 (7)	-0.0019 (6)	-0.0002 (7)
N1	0.057 (2)	0.052 (2)	0.0507 (19)	0.0073 (17)	-0.0018 (15)	0.0017 (15)
01	0.069 (2)	0.066 (2)	0.096 (3)	0.0148 (17)	-0.0236 (18)	0.0034 (17)
O2	0.0178 (10)	0.0545 (15)	0.0494 (13)	0.0060 (9)	-0.0004 (9)	-0.0018 (11)
O3	0.0340 (12)	0.0584 (16)	0.0470 (14)	0.0014 (11)	-0.0062 (10)	-0.0143 (12)
O4	0.0306 (12)	0.0580 (16)	0.0471 (14)	0.0023 (11)	0.0035 (10)	0.0138 (12)
O5	0.0310 (12)	0.0564 (15)	0.0388 (12)	0.0093 (11)	0.0012 (9)	-0.0032 (11)
O6	0.0300 (13)	0.077 (2)	0.0534 (16)	0.0003 (12)	-0.0036 (11)	-0.0246 (14)
O7	0.0286 (12)	0.0743 (19)	0.0528 (15)	-0.0006 (11)	0.0012 (10)	0.0264 (13)
S1	0.0202 (4)	0.0428 (5)	0.0345 (4)	0.0020 (3)	-0.0012 (3)	-0.0007 (3)

Geometric parameters (Å, °)

C1—C2	1.389 (6)	C11—C12	1.398 (5)
C1—C6	1.396 (6)	C11—S1	1.762 (4)
C1—C7	1.456 (6)	C12—C13	1.369 (5)
C2—C3	1.362 (7)	C12—H12	0.9300
С2—Н2	0.9300	С13—Н13	0.9300
C3—C4	1.380 (7)	Mg1—O5	2.031 (2)
С3—Н3	0.9300	Mg1—O5 ⁱ	2.031 (2)
C4—C5	1.364 (7)	Mg1—O6	2.055 (2)
C4—H4	0.9300	Mg1—O6 ⁱ	2.055 (2)
C5—C6	1.366 (6)	Mg1—O7 ⁱ	2.071 (2)
С5—Н5	0.9300	Mg1—O7	2.071 (2)
C6—O1	1.346 (5)	O1—H1C	0.8500
C7—N1	1.251 (5)	O2—S1	1.457 (2)
С7—Н7	0.9300	O3—S1	1.443 (2)
C8—C13	1.391 (5)	O4—S1	1.465 (2)
C8—C9	1.395 (6)	O5—H5A	0.9599
C8—N1	1.408 (5)	O5—H5B	0.9618
C9—C10	1.360 (6)	O6—H6B	0.9551
С9—Н9	0.9300	O6—H6C	0.9653
C10—C11	1.394 (5)	O7—H7B	0.9645
C10—H10	0.9300	O7—H7C	0.9544
C2—C1—C6	118.0 (4)	C12—C13—C8	121.4 (4)
C2—C1—C7	121.0 (4)	С12—С13—Н13	119.3

C6—C1—C7	121.0 (4)	С8—С13—Н13	119.3
C3—C2—C1	121.5 (5)	O5—Mg1—O5 ⁱ	180.0
C3—C2—H2	119.3	O5—Mg1—O6	89.73 (10)
C1—C2—H2	119.3	O5 ⁱ —Mg1—O6	90.27 (10)
C2—C3—C4	119.2 (5)	$O5-Mg1-O6^{i}$	90.27 (10)
С2—С3—Н3	120.4	O5 ⁱ —Mg1—O6 ⁱ	89.73 (10)
С4—С3—Н3	120.4	O6—Mg1—O6 ⁱ	180.0
C5—C4—C3	120.6 (4)	O5—Mg1—O7 ⁱ	91.30 (10)
C5—C4—H4	119.7	O5 ⁱ —Mg1—O7 ⁱ	88.70 (10)
C3—C4—H4	119.7	O6—Mg1—O7 ⁱ	91.47 (11)
C4—C5—C6	120.4 (5)	O6 ⁱ —Mg1—O7 ⁱ	88.53 (11)
C4—C5—H5	119.8	O5—Mg1—O7	88.70 (10)
С6—С5—Н5	119.8	O5 ⁱ —Mg1—O7	91.30 (10)
O1—C6—C5	119.9 (4)	O6—Mg1—O7	88.53 (11)
O1—C6—C1	119.9 (4)	O6 ⁱ —Mg1—O7	91.47 (11)
C5—C6—C1	120.2 (5)	O7 ⁱ —Mg1—O7	180.0
N1—C7—C1	123.3 (4)	C7—N1—C8	121.9 (4)
N1—C7—H7	118.4	C6—O1—H1C	105.6
С1—С7—Н7	118.4	Mg1—O5—H5A	108.8
C13—C8—C9	119.2 (4)	Mg1—O5—H5B	110.0
C13—C8—N1	123.3 (4)	H5A—O5—H5B	109.5
C9—C8—N1	117.4 (4)	Mg1—O6—H6B	108.7
C10C9C8	120.2 (4)	Mg1—O6—H6C	109.7
С10—С9—Н9	119.9	H6B—O6—H6C	109.4
С8—С9—Н9	119.9	Mg1—07—H7B	109.8
C9—C10—C11	120.2 (4)	Mg1—07—H7C	109.1
C9—C10—H10	119.9	H7B—O7—H7C	109.5
C11—C10—H10	119.9	O3—S1—O2	111.04 (14)
C10-C11-C12	120.5 (3)	O3—S1—O4	112.40 (15)
C10-C11-S1	119.4 (3)	O2—S1—O4	113.27 (14)
C12—C11—S1	120.1 (3)	O3—S1—C11	107.02 (15)
C13—C12—C11	118.5 (3)	O2—S1—C11	106.65 (14)
C13—C12—H12	120.8	04—S1—C11	105.96 (15)
C11—C12—H12	120.8		

Symmetry codes: (i) -x+2, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1C…N1	0.85	1.78	2.574 (5)	154
O5—H5A···O4 ⁱⁱ	0.96	2.03	2.732 (3)	129
O5—H5B…O3	0.96	1.87	2.768 (3)	154
O6—H6B···O3 ⁱⁱⁱ	0.96	2.19	2.749 (3)	116
O6—H6C…O2	0.97	1.86	2.783 (3)	160
O7—H7B···O4 ^{iv}	0.96	2.25	2.770 (3)	113
$O7$ — $H7C$ ··· $O2^{v}$	0.95	1.85	2.760 (3)	159

Symmetry codes: (ii) *x*, *y*, *z*-1; (iii) *x*+1, *y*, *z*; (iv) -*x*+1, -*y*, -*z*+1; (v) -*x*+2, -*y*, -*z*+1.

